Thursday 16 November 2017

Mad Weighted Mobile Media Tempo


Un metodo di calcolo Previsioni meteo Esempi A.1 metodi di calcolo Dodici di calcolo previsioni sono disponibili. La maggior parte di questi metodi prevedono il controllo utente limitato. Ad esempio, potrebbe essere specificato il peso posto sulla recente dati storici o l'intervallo di date di dati storici utilizzati nei calcoli. I seguenti esempi mostrano la procedura di calcolo per ciascuno dei metodi di previsione disponibili, in un insieme identico di dati storici. I seguenti esempi usano gli stessi 2004 e 2005 i dati di vendita per produrre una previsione di vendita del 2006. Oltre al calcolo previsioni, ogni esempio include un 2005 elaborate simulato per un periodo di tre mesi di disinnesto (elaborazione opzione 19 3) che viene poi utilizzata per cento di accuratezza e significa calcoli deviazione assoluta (vendite effettive rispetto alla previsione simulato). A.2 previsione Criteri di valutazione delle prestazioni seconda selezione di opzioni di elaborazione e sulle tendenze ei modelli esistenti nei dati di vendita, alcuni metodi di previsione si esibiranno meglio di altri per una determinata serie di dati storici. Un metodo di previsione che è appropriato per un prodotto può non essere adatto per un altro prodotto. E 'anche improbabile che un metodo di previsione che fornisce buoni risultati in una fase del ciclo di vita dei prodotti rimarrà appropriata durante l'intero ciclo di vita. Si può scegliere tra due metodi per valutare le prestazioni attuali dei metodi di previsione. Questi sono Deviazione assoluta media (MAD) e Percentuale di Precisione (POA). Entrambi questi metodi di valutazione delle prestazioni richiedono dati di vendita storici per un periodo di tempo specificato dall'utente. Questo periodo di tempo è chiamato un periodo di disinnesto o periodi best fit (PBF). I dati di questo periodo è utilizzato come base per raccomandare quale dei metodi di previsione da utilizzare nella fabbricazione proiezione previsioni successivo. Questa raccomandazione è specifico per ciascun prodotto, e può variare da una generazione previsioni a quella successiva. I metodi di valutazione delle prestazioni di due previsioni sono dimostrati nelle pagine seguenti gli esempi dei metodi di previsione dodici. A.3 Metodo 1 - percentuale specificata rispetto allo scorso anno Questo metodo moltiplica i dati di vendita rispetto all'anno precedente di un fattore specificato dall'utente, ad esempio, 1,10 per un aumento del 10, o 0,97 per un 3 diminuzione. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero specificato dall'utente di periodi di tempo per la valutazione delle prestazioni del tempo (opzione di elaborazione 19). A.4.1 Previsione Gamma di calcolo della storia delle vendite da utilizzare per il calcolo del fattore di crescita (elaborazione opzione 2a) 3 in questo esempio. Somma gli ultimi tre mesi del 2005: 114 119 137 370 Somma gli stessi tre mesi del precedente esercizio: 123 139 133 395 Il fattore calcolato 370.395 0,9367 Calcolare le previsioni: gennaio 2005 le vendite 128 0,9367 119.8036 o circa 120 febbraio 2005 le vendite 117 0.9367 109,5939 o circa 110 marzo 2005 le vendite 115 0,9367 107.7205 o circa 108 A.4.2 Previsioni simulato calcolo Somma i tre mesi del 2005 prima di holdout periodo (luglio, agosto, settembre): 129 140 131 400 Somma gli stessi tre mesi per la anno precedente: 141 128 118 387 Il fattore calcolato 400.387 1,033,591731 millions Calcolare previsione simulata: ottobre 2004 le vendite 123 1,033,591731 millions 127,13,178 mila novembre 2004 le vendite 139 1,033,591731 millions 143,66,925 mila dicembre 2004 le vendite 133 1,033,591731 millions 137,4677 A.4.3 percentuale di precisione di calcolo POA (127,13,178 mila 143,66,925 mila 137,4677) (114 119 137) 100 408,26873 370 100 110,3429 A.4.4 medio assoluto MAD Deviazione di calcolo (127,13178-114 143,66 mila novecentoventicinque - 119 137.4677- 137) 3 (13,13178 24,66925 0,4677) 3 12,75624 A.5 metodo 3 - L'anno scorso a questo anno Questo metodo copie dei dati di vendita rispetto all'anno precedente per l'anno successivo. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero di periodi di tempo specificati per la valutazione delle prestazioni del tempo (opzione di elaborazione 19). A.6.1 Previsione calcolo Numero di periodi da includere nella media (elaborazione opzione 4a) 3 in questo esempio per ogni mese di previsione, la media dei precedenti tre mesi di dati. Gennaio previsione: 114 119 137 370, 370 3 123,333 o 123 Febbraio previsione: 119 137 123 379, 379 3 126,333 o 126 marzo previsione: 137 123 126 379, 386 3 128,667 o 129 A.6.2 Previsioni simulato di calcolo ottobre 2005 le vendite (129 140 131) 3 133,3333 novembre 2005 le vendite (140 131 114) 3 128,3333 vendite dicembre 2005 (131 114 119) 3 121,3333 A.6.3 Percentuale di POA precisione di calcolo (133,3333 128,3333 121,3333) (114 119 137) 100 103,513 A.6.4 medio assoluto deviazione Calcolo MAD (133.3333 - 114 128.3333 - 119 121.3333 - 137) 3 14,7777 A.7 Metodo 5 - Linear approssimazione lineare Approssimazione calcola una tendenza basata su due punti dati di vendita di storia. Questi due punti definiscono una linea di tendenza retta che si proietta nel futuro. Utilizzare questo metodo con cautela, in quanto le previsioni a lungo raggio vengono sfruttate da piccole variazioni in soli due punti dati. Richiesto storia delle vendite: il numero di periodi da includere nella regressione (opzione di elaborazione 5a), più 1 più il numero di periodi di tempo per la valutazione delle prestazioni del tempo (opzione di elaborazione 19). A.8.1 Previsione Calcolo numero di periodi da includere nella regressione (lavorazione opzione 6a) 3 in questo esempio per ogni mese di previsione, aggiungere l'aumento o la diminuzione durante i periodi specificati prima di Holdout periodo dell'esercizio precedente. Media dei tre mesi precedenti (114 119 137) 3 123,3333 Sintesi dei tre mesi precedenti con peso considerati (114 1) (119 2) (137 3) 763 Differenza tra i valori 763-123,3333 (1 2 3) 23 Ratio ( 12 22 32) - 2 14 marzo-2 dicembre value1 DifferenceRatio 232 11.5 valore2 media - rapporto valore1 123,3333-11,5 2 100,3333 meteo (1 n) valore1 valore2 4 11.5 100,3333 146,333 o 146 Previsione 5 11,5 100,3333 157,8333 o 158 Previsione 6 11.5 100,3333 169,3333 o 169 A.8.2 Previsioni simulato di calcolo vendite di ottobre 2004: media dei tre mesi precedenti (129 140 131) 3 133,3333 Sintesi dei tre mesi precedenti con peso considerati (129 1) (140 2) (131 3) 802 Differenza tra il valori 802-133,3333 (1 2 3) 2 ratio (12 22 32) - 2 14 marzo-2 Dicembre value1 DifferenceRatio 22 1 valore2 media - rapporto valore1 133,3333-1 2 131,3333 meteo (1 n) valore1 valore2 4 1 131,3333 135,3333 novembre 2004 vendita media dei tre mesi precedenti (140 131 114) 3 128,3333 Sintesi dei tre mesi precedenti con peso considerati (140 1) (131 2) (114 3) 744 Differenza tra i valori 744-128,3333 (1 2 3) -25,9999 value1 DifferenceRatio -25,99992 -12,9999 Valore2 media - rapporto valore1 128,3333 - (-12,9999) 2 154,3333 previsione a 4 -12,9999 154,3333 102,3333 dicembre 2004 di vendita medio dei tre mesi precedenti (131 114 119) 3 121,3333 Sintesi dei precedenti tre mesi con peso considerato (131 1) (114 2) (119 3) 716 Differenza tra i valori 716 - 121,3333 (1 2 3) -11,9999 value1 DifferenceRatio -11,99992 -5,9999 Valore2 media - rapporto valore1 121,3333 - (-5,9999) 2 133,3333 previsione a 4 (- 5,9999) 133,3333 109,3333 A.8.3 Percentuale di POA precisione di calcolo (135.33 102.33 109.33) (114 119 137) 100 93.78 A.8.4 medio assoluto MAD deviazione di calcolo (135,33-114 102,33-119 109,33-137) 3 21.88 A.9 Metodo 7 - secondo Grado approssimazione lineare di regressione determina i valori di a e B nella formula previsioni Y un bX con l'obiettivo di una linea retta ai dati storici di vendita. In secondo grado di approssimazione è simile. Tuttavia, questo metodo determina valori di a, b, e c nella formula previsioni Y a bX CX2 con l'obiettivo di montare una curva ai dati storici vendite. Questo metodo può essere utile quando il prodotto è nel passaggio tra le fasi di un ciclo di vita. Ad esempio, quando un nuovo prodotto si sposta da introduzione a stadi di crescita, la tendenza di vendita può accelerare. A causa del secondo termine di ordine, la previsione può avvicinarsi rapidamente infinito o scendere a zero (a seconda che il coefficiente c è positivo o negativo). Pertanto, questo metodo è utile solo nel breve periodo. specifiche di previsione: Le formule trova a, b, c per adattarsi una curva a esattamente tre punti. Si specifica n nell'opzione di elaborazione 7a, il numero di periodi di tempo di dati di accumulare in ognuno dei tre punti. In questo esempio n 3. Pertanto, i dati di vendita effettivi per aprile a giugno sono combinati in il primo punto, Q1. Luglio a settembre vengono aggiunti insieme per creare Q2 e ottobre a dicembre somma da Q3. La curva verrà montato tre valori Q1, Q2, Q3 e. storia delle vendite obbligatori: 3 n periodi per il calcolo della previsione più il numero di periodi di tempo necessari per la valutazione delle performance di previsione (PBF). Numero di periodi da includere (elaborazione opzione 7a) 3 in questo esempio Utilizzare i precedenti (3 N) mesi in blocchi di tre mesi: Q1 (apr-Giu) 125 122 137 384 Q2 (LUG-SET) 129 140 131 400 Q3 ( ott-dic) 114 119 137 370 la fase successiva prevede il calcolo dei tre coefficienti a, b, e c per essere utilizzata nella formula previsione Y a bX CX2 (1) Q1 un CX2 bX (dove X 1) abc (2) Q2 un CX2 bX (dove X 2) una 2b 4c (3) Q3 un CX2 bX (dove X 3) un 3b 9c risolvere le tre equazioni simultaneamente per trovare b, a, c: Sottrarre l'equazione (1) dall'equazione (2) e risolvere per b (2) - (1) Q2 - Q1 b 3c Substitute questa equazione per b nell'equazione (3) (3) Q3 3 (Q2 - Q1) - 3c c Infine, sostituire queste equazioni per ae b in l'equazione (1) Q3 - 3 (Q2 - Q1) (q2 - Q1) - 3c c Q1 c (Q3 - Q2) (Q1 - Q2) 2 Il metodo secondo grado ravvicinamento calcola a, b, e c come segue: a Q3 - 3 (Q2 - Q1) 370-3 (400 - 384) 322 C (3T - Q2) (Q1 - Q2) 2 (370 - 400) (384 - 400) 2 -23 b (Q2 - Q1) - 3 quater ( 400-384) - (3 -23) 85 Y a bX CX2 322 85X (-23) X2 gennaio a marzo del tempo (X4): (322 340-368) 3 2943 98 per periodo aprile a previsioni di giugno (X5): ( 322 425-575) 3 57,333 o 57 per periodo luglio a settembre del tempo (X6): (322 510-828) 3 1,33 o 1 per ogni periodo ottobre a dicembre (X7) (322 595-11.273 -70 A.9.2 previsioni simulato Calcolo ottobre, novembre e dicembre 2004 le vendite: Q1 (gen - mar) 360 Q2 (apr-giu) 384 Q3 (Lug-SET) 400 a 400 - 3 (384 - 360) 328 C (400 - 384) (360 - 384 ) 2 -4 b (384-360) - 3 (-4) 36 328 36 4 (-4) 163 136 A.9.3 Percentuale di POA precisione di calcolo (136 136 136) (114 119 137) 100 110.27 A.9.4 media deviazione assoluta Calcolo MAD (136-114 136-119 136-137) 3 13.33 A.10 Metodo 8 - metodo flessibile Il metodo flessibile (per cento rispetto al n mesi prima) è simile al metodo 1, cento rispetto allo scorso anno. Entrambi i metodi si moltiplicano i dati di vendita provenienti da un periodo di tempo precedente di un fattore specificato dall'utente, quindi progetto che risultano nel futuro. Nella cento rispetto allo scorso anno il metodo, la proiezione si basa sui dati dello stesso periodo dell'esercizio precedente. Il metodo flessibile aggiunge la possibilità di specificare un periodo di tempo diverso da quello dello stesso periodo dello scorso anno da utilizzare come base per i calcoli. Fattore di moltiplicazione. Ad esempio, specificare 1.15 in opzione di elaborazione 8b per aumentare i dati storici delle vendite precedenti da 15. periodo di Base. Ad esempio, n 3 causerà la prima previsione per essere basato su dati di vendita nel mese di ottobre 2005. Minimo storia delle vendite: il numero specificato dall'utente di periodi indietro al periodo base, più il numero di periodi di tempo necessari per valutare le prestazioni di previsione ( PBF). A.10.4 media assoluta Deviazione Calcolo MAD (148-114 161-119 151-137) 3 30 A.11 Metodo 9 - Weighted Moving Average Il metodo ponderata media mobile (WMA) è simile al metodo 4, media mobile (MA). Tuttavia, con la ponderata media mobile è possibile assegnare pesi diseguali ai dati storici. Il metodo calcola una media ponderata di storia recente vendite per arrivare ad una proiezione per il breve termine. Dati più recenti è di solito un fattore di ponderazione maggiore di dati più vecchi, quindi questo rende WMA più reattiva ai cambiamenti nel livello delle vendite. Tuttavia, previsione pregiudizi e gli errori sistematici ancora si verificano quando la storia delle vendite di prodotti presenta una forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi, piuttosto che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. n il numero di periodi di storia delle vendite da utilizzare nel calcolo del tempo. Ad esempio, specificare n 3 nell'opzione di elaborazione 9a utilizzare gli ultimi tre periodi come base per la proiezione nel prossimo periodo di tempo. Un grande valore di n (ad esempio 12) richiede più storia di vendita. Essa si traduce in una previsione stabile, ma sarà lenta a riconoscere cambiamenti nel livello di vendite. D'altra parte, un piccolo valore per n (ad esempio 3) risponde rapidamente a cambiamenti nel livello di vendite, ma la previsione può variare così ampiamente che la produzione non può rispondere alle variazioni. Il peso assegnato a ciascuno dei periodi di dati storici. I pesi assegnati dovranno totale a 1.00. Ad esempio, quando n 3, assegnare un peso di 0,6, 0,3, e 0,1, con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo necessari per valutare le prestazioni di previsione (PBF). MAD (133,5-114 121,7-119 118,7-137) 3 13.5 A.12 Metodo 10 - Linear Smoothing Questo metodo è simile al metodo 9, Weighted Moving Average (WMA). Tuttavia, invece di assegnare arbitrariamente pesi ai dati storici, una formula viene utilizzata per assegnare i pesi che declinano in modo lineare e sommare a 1.00. Il metodo calcola una media ponderata di recente storia delle vendite per arrivare ad una proiezione per il breve termine. Come è vero per tutti lineare in movimento le tecniche di previsione media, pregiudizi meteorologiche e errori sistematici si verificano quando la storia di vendita del prodotto presenta forte tendenza o modelli stagionali. Questo metodo funziona meglio per le previsioni a breve gamma di prodotti maturi, piuttosto che per i prodotti nelle fasi di crescita o di obsolescenza del ciclo di vita. n il numero di periodi di storia delle vendite da utilizzare nel calcolo del tempo. Questo è specificato nella opzione di elaborazione 10a. Ad esempio, specificare n 3 nell'opzione di elaborazione 10b di utilizzare gli ultimi tre periodi come base per la proiezione nel prossimo periodo di tempo. Il sistema assegna automaticamente i pesi ai dati storici che il declino lineare e somma di 1,00. Ad esempio, quando n 3, il sistema assegna pesi di 0,5, 0,3333 e 0,1, con i dati più recenti che ricevono il maggior peso. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo necessari per valutare le prestazioni di previsione (PBF). A.12.1 Previsione Calcolo numero di periodi da includere nel processo di snellimento media (opzione 10a di elaborazione) 3 in questo esempio rapporto per un periodo precedente 3 (n2 n) 2 3 (32 3) 2 36 0,5 Rapporto per due periodi precedenti 2 (N2 n ) 2 2 (32 3) 2 26 0,3333 .. Rapporto per tre periodi precedenti 1 (n2 n) 2 1 (32) 2 3 16 0,1666 .. Gennaio previsione: 137 0.5 119 13 114 16 127.16 o 127 Febbraio previsione: 127 0.5 137 13 119 16 129 marzo previsione: 129 0.5 127 13 137 16 129,666 o 130 A.12.2 simulato previsione di calcolo dell'ottobre 2004 vendite 129 16 140 26 131 36 133,6666 novembre 2004 di vendita 140 16 131 26 114 36 124 dicembre 2004, le vendite 131 16 114 26 119 36 119.3333 A.12.3 percentuale di precisione di calcolo POA (133,6666 124 119,3333) (114 119 137) 100 101,891 A.12.4 media deviazione assoluta Calcolo MAD (133,6666-114 124 - 119 119,3333-137) 3 14,1111 A.13 Metodo 11 - esponenziale Questo metodo è simile al metodo 10, Linear Smoothing. Nel lineare Smoothing il sistema assegna pesi ai dati storici che il declino lineare. In livellamento esponenziale, il sistema assegna pesi che in modo esponenziale decadimento. L'equazione di previsione di livellamento esponenziale è: prevedono un (precedenti vendite effettive) (1 - a) precedente previsione La previsione è una media ponderata delle vendite effettive rispetto al periodo precedente e le previsioni rispetto al periodo precedente. a è il peso applicato alle vendite effettive del periodo precedente. (1 - a) è il peso applicato alla previsione per il periodo precedente. I valori validi per un range da 0 a 1, e di solito sono compresi tra 0,1 e 0,4. La somma dei pesi è 1.00. un (1 - a) 1 Si deve assegnare un valore per la costante di smoothing, a. Se non si assegna valori per la costante di smoothing, il sistema calcola un valore assunto in base al numero di periodi della storia delle vendite di cui l'opzione di elaborazione 11a. una costante smoothing utilizzato per calcolare la media lisciata per il livello generale o la grandezza delle vendite. I valori validi per un range da 0 a 1. n la gamma di dati storici di vendita da includere nei calcoli. In genere un anno di dati di storia delle vendite è sufficiente per stimare il livello generale delle vendite. Per questo esempio, un valore piccolo per n (n 3) è stato scelto al fine di ridurre i calcoli manuali necessarie per verificare i risultati. livellamento esponenziale in grado di generare una previsione basata su un minimo di un punto di dati storici. Minimo richiesto storia delle vendite: n più il numero di periodi di tempo necessari per valutare le prestazioni di previsione (PBF). A.13.1 Previsione Calcolo numero di periodi da includere nel processo di snellimento media (trasformazione opzione 11a) 3, e il fattore alfa (il trattamento opzione 11b) vuoto in questo esempio un fattore per i più vecchi dati di vendita 2 (11), o 1 quando viene specificato alpha un fattore per il 2 ° più vecchi dati di vendita 2 (12), o alfa quando alfa è specificato un fattore per il 3 ° più vecchi dati di vendita 2 (13), o alfa quando alfa è specificato un fattore per i dati di vendita più recenti 2 (1n) o alfa quando viene specificata alfa novembre Sm. AVG. un (ottobre Actual) (1 - a) Ottobre Sm. AVG. 1 114 0 0 114 dicembre Sm. AVG. un (novembre Actual) (1 - a) Novembre Sm. AVG. 23 119 13 114 117,3333 gennaio Previsione un (Dicembre Actual) (1 - a) Dicembre Sm. AVG. 24 137 24 117.3333 127,16,665 mila o 127 febbraio Previsioni meteo gennaio 127 marzo Previsione gennaio Previsioni 127 A.13.2 Previsioni simulato Calcolo luglio 2004 Sm. AVG. 22 129 129 Agosto Sm. AVG. 23 140 13 129 136,3333 settembre Sm. AVG. 24 131 24 136.3333 133.6666 ottobre 2004 le vendite settembre Sm. AVG. 133.6666 agosto 2004 Sm. AVG. 22 140 140 Settembre Sm. AVG. 23 131 13 140 134 Ottobre Sm. AVG. 24 114 24 134 124 novembre 2004 le vendite settembre Sm. AVG. 124 settembre 2004 Sm. AVG. 22 131 131 Ottobre Sm. AVG. 23 114 13 131 119,6666 novembre Sm. AVG. 24 119 24 119.6666 119.3333 dicembre 2004, le vendite settembre Sm. AVG. 119.3333 A.13.3 Percentuale di POA precisione di calcolo (133,6666 124 119.3333) (114 119 137) 100 101,891 A.13.4 medio assoluto MAD deviazione di calcolo (133,6666-114 124 - 119 119.3333 - 137) 3 14,1111 A.14 Metodo 12 - esponenziale con Trend e la stagionalità Questo metodo è simile al metodo 11, esponenziale in quanto un medio lisciato viene calcolato. Tuttavia, il metodo 12 include anche un termine nell'equazione di previsione per calcolare una tendenza levigata. La previsione è composto da un levigato medi acquisiti regolato per un trend lineare. Quando specificato nell'opzione di elaborazione, la previsione è rettificato per stagionalità. una costante smoothing utilizzato per calcolare la media lisciata per il livello generale o la grandezza delle vendite. I valori validi per la gamma alfa da 0 a 1. b la costante di smoothing utilizzato per calcolare la media lisciato per la componente di trend della previsione. I valori validi per gamma beta da 0 a 1. Se un indice stagionale è applicato al ae b previsioni sono indipendenti l'uno dall'altro. Non hanno da aggiungere a 1,0. Minimo richiesto storia delle vendite: due anni più il numero di periodi di tempo necessari per valutare le prestazioni di previsione (PBF). Metodo 12 utilizza due equazioni di livellamento esponenziale e una media semplice per calcolare una media levigata, una tendenza lisciato, e un semplice fattore di media stagionale. A.14.1 Previsione di calcolo A) Un MAD media esponenziale livellata (122,81-114 133,14-119 135,33-137) 3 8.2 A.15 Valutare le previsioni È possibile selezionare metodi di previsione per generare ben dodici le previsioni per ciascun prodotto. Ciascun metodo di previsione creerà probabilmente una proiezione leggermente diverso. Quando migliaia di prodotti sono previste, non è pratico di fare una decisione soggettiva su quale delle previsioni da utilizzare nei vostri programmi per ciascuno dei prodotti. Il sistema valuta automaticamente le prestazioni per ciascuno dei metodi di previsione selezionati, e per ciascuno dei prodotti previsti. Si può scegliere tra due criteri di performance, media deviazione assoluta (MAD) e Percentuale di Precisione (POA). MAD è una misura di errore di previsione. POA è una misura di bias previsione. Entrambe queste tecniche di valutazione delle prestazioni richiedono effettivi dati storici di vendita per un periodo di tempo specificato dall'utente. Questo periodo della storia recente è chiamato un periodo di dati di controllo o di periodi di misura migliore (PBF). Per misurare le prestazioni di un metodo di previsione, utilizzare le formule di previsione per simulare una previsione per il periodo di dati di controllo storici. Ci sarà solitamente differenze tra i dati di vendita reali e il simulato meteo per il periodo di dati di controllo. Quando più metodi di previsione sono selezionati, questo stesso processo si verifica per ogni metodo. previsioni multipli sono calcolati per il periodo di disimpegno, e rispetto alla storia conosciuta vendita per lo stesso periodo di tempo. Il metodo di previsione che produce la migliore corrispondenza (best fit) tra le previsioni e le vendite effettive durante il periodo di dati di controllo è raccomandato per l'uso nei vostri piani. Questa raccomandazione è specifico per ciascun prodotto, e potrebbe cambiare da una generazione previsioni a quella successiva. Deviazione A.16 medio assoluto (MAD) MAD è la media (o media) dei valori assoluti (o grandezza) delle deviazioni (o errori) tra i dati effettivi e previsti. MAD è una misura della grandezza media di errori aspettarsi, dato un metodo di previsione e la storia dei dati. Poiché i valori assoluti sono utilizzati nel calcolo, errori positivi non annullano errori negativi. Quando si confrontano diversi metodi di previsione, quello con il più piccolo MAD ha dimostrato di essere il più affidabile per tale prodotto per tale periodo di disinnesto. Quando la previsione è imparziale e gli errori sono distribuiti normalmente, vi è una semplice relazione matematica tra MAD e le altre due misure comuni di distribuzione, deviazione standard e errore quadratico medio: A.16.1 Percentuale di Precisione (POA) Percentuale di Precisione (POA) è una misura di bias previsione. Quando le previsioni sono sempre troppo alti, le scorte si accumulano e costi di magazzino aumentano. Quando le previsioni sono sempre due bassi, le scorte sono consumati e il servizio clienti declina. Una previsione che è di 10 unità troppo basso, quindi 8 unità troppo alta, quindi 2 unità troppo alte, sarebbe una previsione imparziale. L'errore positivo del 10 viene annullata da errori negativi di 8 e 2. errore effettivo - Previsione Quando un prodotto può essere conservato in magazzino, e quando la previsione è imparziale, una piccola quantità di scorte di sicurezza può essere utilizzato per tamponare gli errori. In questa situazione, non è così importante eliminare errori di previsione come è generare previsioni imparziali. Tuttavia nel settore dei servizi, la situazione sopra dovrebbe essere visto come tre errori. Il servizio dovrebbe essere a corto di personale nel primo periodo, poi sovradimensionati per i prossimi due periodi. Nei servizi, l'entità degli errori di previsione è di solito più importante di quanto non sia pregiudizi del tempo. La somma per il periodo holdout permette errori positivi per annullare gli errori negativi. Quando il totale delle vendite effettive supera il totale delle vendite di previsione, il rapporto è maggiore di 100. Naturalmente, è impossibile essere più di 100 accurate. Quando una previsione è imparziale, il rapporto POA sarà 100. Pertanto, è più desiderabile essere 95 precisa che essere 110 accurate. I criteri POA selezionare il metodo di previsione che ha un rapporto più vicino al POA 100. script in questa pagina migliora la navigazione dei contenuti, ma non cambia il contenuto in qualsiasi way.3 Capire livelli previsti e metodi che è possibile generare sia di dettaglio (singolo articolo) le previsioni e sintesi (linea di prodotto) le previsioni che riflettono modelli di domanda di prodotto. Il sistema analizza passato vendite per calcolare le previsioni utilizzando 12 metodi di previsione. Le previsioni includono informazioni dettagliate a livello di articolo e più alto livello di informazioni su una filiale o la società nel suo complesso. 3.1 Previsione Criteri di valutazione delle prestazioni In base alla selezione di opzioni di elaborazione e sulle tendenze e modelli nei dati di vendita, alcuni metodi di previsione prestazioni migliori di altri per una determinata serie di dati storici. Un metodo di previsione che è appropriato per un prodotto potrebbe non essere appropriato per un altro prodotto. Si potrebbe scoprire che un metodo di previsione che fornisce buoni risultati in una fase del ciclo di vita del prodotto rimane appropriata durante l'intero ciclo di vita. È possibile scegliere tra due metodi per valutare le prestazioni attuali dei metodi di previsione: Percentuale di accuratezza (POA). Media deviazione assoluta (MAD). Entrambi questi metodi di valutazione delle prestazioni richiedono dati di vendita storici per un periodo specificato. Questo periodo è chiamato un periodo holdout o un periodo di best fit. I dati di questo periodo è utilizzato come base per raccomandare quale metodo di previsione per la fabbricazione di proiezione previsioni successivo. Questa raccomandazione è specifico per ciascun prodotto e può cambiare da una generazione previsioni a quella successiva. 3.1.1 Best Fit Il sistema suggerisce la migliore previsione fit applicando i metodi di previsione selezionati in passato cronologia degli ordini di vendita e confrontando la simulazione del tempo alla storia reale. Quando si genera una migliore previsione in forma, il sistema confronta effettive storie ordini di vendita per le previsioni per un periodo di tempo specifico e calcola quanto accuratamente ogni metodo di previsione diverso previsto vendite. Quindi il sistema raccomanda la previsione più accurata come la soluzione migliore. Questo grafico illustra migliori previsioni fit: Figura 3-1 Scelta migliore prevedere il sistema utilizza questa sequenza di passaggi per determinare la soluzione migliore: utilizzare ogni metodo indicato per simulare una previsione per il periodo di dati di controllo. Confronta le vendite reali alle previsioni simulate per il periodo di dati di controllo. Calcolare il POA o il MAD per determinare quale metodo di previsione più si avvicina ultimi vendite effettive. Il sistema utilizza sia POA o MAD, in base alle opzioni di elaborazione selezionate. Consiglia best fit previsioni dal POA che è più vicino al 100 per cento (sopra o sotto) o il MAD che è più vicino a zero. 3.2 Metodi di previsione JD Edwards EnterpriseOne Previsioni Management utilizza 12 metodi per la previsione quantitativa e indica quale metodo fornisce la soluzione migliore per la situazione di previsione. Questa sezione discute: Metodo 1: cento rispetto allo scorso anno. Metodo 2: Percentuale calcolata rispetto allo scorso anno. Metodo 3: l'anno scorso a questo anno. Metodo 4: media mobile. Metodo 5: Lineare approssimazione. Metodo 6: regressioni al minimo quadrato. Metodo 7: secondo grado approssimazione. Metodo 8: metodo flessibile. Metodo 9: ponderata media mobile. Metodo 10: Linear Smoothing. Metodo 11: esponenziale. Metodo 12: livellamento esponenziale con Trend e la stagionalità. Specificare il metodo che si desidera utilizzare nelle opzioni di elaborazione per il programma di previsione Generation (R34650). La maggior parte di questi metodi forniscono un controllo limitato. Ad esempio, il peso posto sulla recente dati storici o l'intervallo di date di dati storici che viene utilizzato nei calcoli può essere specificato dall'utente. Gli esempi nella guida indicano la procedura di calcolo per ciascuno dei metodi di previsione disponibili, in un insieme identico di dati storici. Gli esempi di metodo nella parte all'uso guida o tutti questi insiemi di dati, che è dati storici degli ultimi due anni. La proiezione del tempo va in prossimo anno. Questi dati la storia delle vendite è stabile con piccoli aumenti stagionali di luglio e dicembre. Questo modello è caratteristica di un prodotto maturo che potrebbe essere avvicinando obsolescenza. 3.2.1 Metodo 1: cento rispetto allo scorso anno Questo metodo utilizza il cento rispetto allo scorso anno formula per moltiplicare ciascun periodo di previsione per la percentuale di aumento o diminuzione specificato. Per prevedere la domanda, questo metodo richiede il numero di periodi per la migliore vestibilità più un anno di storia delle vendite. Questo metodo è utile per prevedere la domanda per gli elementi stagionali con la crescita o il declino. 3.2.1.1 Esempio: Metodo 1: cento rispetto allo scorso anno, il cento rispetto allo scorso anno formula moltiplica i dati di vendita rispetto all'anno precedente di un fattore si specifica e quindi i progetti che si traducono nel corso del prossimo anno. Questo metodo potrebbe essere utile nel budget per simulare l'effetto di un tasso di crescita specificata o quando la storia di vendita ha una significativa componente stagionale. specifiche di previsione: fattore di moltiplicazione. Ad esempio, specificare 110 in opzione di elaborazione per aumentare i anni le vendite dati storici precedenti del 10 per cento. Richiesto storia delle vendite: un anno per il calcolo della previsione, più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit) che si specifica. Questa tabella è storia utilizzato nel calcolo del tempo: febbraio previsione è pari a 117 volte 1.1 128,7 arrotondato al 129. marzo previsione è uguale a 115 volte 1.1 126,5 arrotondata a 127. 3.2.2 Metodo 2: Percentuale calcolata rispetto allo scorso anno Questo metodo utilizza la percentuale calcolato su Ultimo formula anno per confrontare gli ultimi vendite dei periodi specificati per le vendite dagli stessi periodi dell'anno precedente. Il sistema determina un aumento o diminuzione percentuale, e quindi moltiplica ogni periodo per la percentuale per determinare la previsione. Per prevedere la domanda, questo metodo richiede il numero di periodi della storia di ordine di vendita più un anno di storia delle vendite. Questo metodo è utile per prevedere la domanda a breve termine per gli elementi stagionali con la crescita o il declino. 3.2.2.1 Esempio: Metodo 2: Percentuale calcolata rispetto allo scorso anno la percentuale calcolata rispetto allo scorso anno formula moltiplica i dati di vendita rispetto all'anno precedente di un fattore che viene calcolato dal sistema, e poi si proietta quel risultato per il prossimo anno. Questo metodo può essere utile nel progettare l'effetto di estendere il tasso di crescita recente di un prodotto nel prossimo preservando un andamento stagionale che è presente nella storia vendite. specifiche Previsione: Gamma di storia delle vendite da utilizzare nel calcolo del tasso di crescita. Ad esempio, specificare n è uguale a 4 nella opzione di elaborazione per confrontare la storia delle vendite per gli ultimi quattro periodi a quelle stesse quattro periodi dell'anno precedente. Utilizzare il rapporto calcolato per rendere la proiezione per il prossimo anno. Richiesto storia delle vendite: un anno per il calcolo della previsione più il numero di periodi di tempo che sono necessari per valutare le prestazioni di previsione (periodi di best fit). Questa tabella è storia utilizzata nel calcolo del tempo, n 4 data: febbraio previsione è pari a 117 volte 0,9766 114.26 arrotondato al 114. marzo previsione è pari 115 volte 0,9766 112.31 arrotondato al 112. 3.2.3 Metodo 3: l'anno scorso a questo anno Questo metodo utilizza last years sales for the next years forecast. To forecast demand, this method requires the number of periods best fit plus one year of sales order history. This method is useful to forecast demand for mature products with level demand or seasonal demand without a trend. 3.2.3.1 Example: Method 3: Last Year to This Year The Last Year to This Year formula copies sales data from the previous year to the next year. This method might be useful in budgeting to simulate sales at the present level. The product is mature and has no trend over the long run, but a significant seasonal demand pattern might exist. Forecast specifications: None. Required sales history: One year for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals January of last year with a forecast value of 128. February forecast equals February of last year with a forecast value of 117. March forecast equals March of last year with a forecast value of 115. 3.2.4 Method 4: Moving Average This method uses the Moving Average formula to average the specified number of periods to project the next period. You should recalculate it often (monthly, or at least quarterly) to reflect changing demand level. To forecast demand, this method requires the number of periods best fit plus the number of periods of sales order history. This method is useful to forecast demand for mature products without a trend. 3.2.4.1 Example: Method 4: Moving Average Moving Average (MA) is a popular method for averaging the results of recent sales history to determine a projection for the short term. The MA forecast method lags behind trends. Forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products that are in the growth or obsolescence stages of the life cycle. Forecast specifications: n equals the number of periods of sales history to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. It results in a stable forecast, but is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) is quicker to respond to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. Required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: February forecast equals (114 119 137 125) 4 123.75 rounded to 124. March forecast equals (119 137 125 124) 4 126.25 rounded to 126. 3.2.5 Method 5: Linear Approximation This method uses the Linear Approximation formula to compute a trend from the number of periods of sales order history and to project this trend to the forecast. You should recalculate the trend monthly to detect changes in trends. This method requires the number of periods of best fit plus the number of specified periods of sales order history. This method is useful to forecast demand for new products, or products with consistent positive or negative trends that are not due to seasonal fluctuations. 3.2.5.1 Example: Method 5: Linear Approximation Linear Approximation calculates a trend that is based upon two sales history data points. Those two points define a straight trend line that is projected into the future. Use this method with caution because long range forecasts are leveraged by small changes in just two data points. Forecast specifications: n equals the data point in sales history that is compared to the most recent data point to identify a trend. For example, specify n 4 to use the difference between December (most recent data) and August (four periods before December) as the basis for calculating the trend. Minimum required sales history: n plus 1 plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast December of past year 1 (Trend) which equals 137 (1 times 2) 139. February forecast December of past year 1 (Trend) which equals 137 (2 times 2) 141. March forecast December of past year 1 (Trend) which equals 137 (3 times 2) 143. 3.2.6 Method 6: Least Squares Regression The Least Squares Regression (LSR) method derives an equation describing a straight line relationship between the historical sales data and the passage of time. LSR fits a line to the selected range of data so that the sum of the squares of the differences between the actual sales data points and the regression line are minimized. The forecast is a projection of this straight line into the future. This method requires sales data history for the period that is represented by the number of periods best fit plus the specified number of historical data periods. The minimum requirement is two historical data points. This method is useful to forecast demand when a linear trend is in the data. 3.2.6.1 Example: Method 6: Least Squares Regression Linear Regression, or Least Squares Regression (LSR), is the most popular method for identifying a linear trend in historical sales data. The method calculates the values for a and b to be used in the formula: This equation describes a straight line, where Y represents sales and X represents time. Linear regression is slow to recognize turning points and step function shifts in demand. Linear regression fits a straight line to the data, even when the data is seasonal or better described by a curve. When sales history data follows a curve or has a strong seasonal pattern, forecast bias and systematic errors occur. Forecast specifications: n equals the periods of sales history that will be used in calculating the values for a and b. For example, specify n 4 to use the history from September through December as the basis for the calculations. When data is available, a larger n (such as n 24) would ordinarily be used. LSR defines a line for as few as two data points. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Minimum required sales history: n periods plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: March forecast equals 119.5 (7 times 2.3) 135.6 rounded to 136. 3.2.7 Method 7: Second Degree Approximation To project the forecast, this method uses the Second Degree Approximation formula to plot a curve that is based on the number of periods of sales history. This method requires the number of periods best fit plus the number of periods of sales order history times three. This method is not useful to forecast demand for a long-term period. 3.2.7.1 Example: Method 7: Second Degree Approximation Linear Regression determines values for a and b in the forecast formula Y a b X with the objective of fitting a straight line to the sales history data. Second Degree Approximation is similar, but this method determines values for a, b, and c in the this forecast formula: Y a b X c X 2 The objective of this method is to fit a curve to the sales history data. This method is useful when a product is in the transition between life cycle stages. For example, when a new product moves from introduction to growth stages, the sales trend might accelerate. Because of the second order term, the forecast can quickly approach infinity or drop to zero (depending on whether coefficient c is positive or negative). This method is useful only in the short term. Forecast specifications: the formula find a, b, and c to fit a curve to exactly three points. You specify n, the number of time periods of data to accumulate into each of the three points. In this example, n 3. Actual sales data for April through June is combined into the first point, Q1. July through September are added together to create Q2, and October through December sum to Q3. The curve is fitted to the three values Q1, Q2, and Q3. Required sales history: 3 times n periods for calculating the forecast plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (May) (Jun) which equals 125 122 137 384 Q2 (Jul) (Aug) (Sep) which equals 140 129 131 400 Q3 (Oct) (Nov) (Dec) which equals 114 119 137 370 The next step involves calculating the three coefficients a, b, and c to be used in the forecasting formula Y a b X c X 2 . Q1, Q2, and Q3 are presented on the graphic, where time is plotted on the horizontal axis. Q1 represents total historical sales for April, May, and June and is plotted at X 1 Q2 corresponds to July through September Q3 corresponds to October through December and Q4 represents January through March. This graphic illustrates the plotting of Q1, Q2, Q3, and Q4 for second degree approximation: Figure 3-2 Plotting Q1, Q2, Q3, and Q4 for second degree approximation Three equations describe the three points on the graph: (1) Q1 a bX cX 2 where X 1(Q1 a b c) (2) Q2 a bX cX 2 where X 2(Q2 a 2b 4c) (3) Q3 a bX cX 2 where X 3(Q3 a 3b 9c) Solve the three equations simultaneously to find b, a, and c: Subtract equation 1 (1) from equation 2 (2) and solve for b: (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Substitute this equation for b into equation (3): (3) Q3 a 3(Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3(Q2 ndash Q1) Finally, substitute these equations for a and b into equation (1): (1)Q3 ndash 3(Q2 ndash Q1) (Q2 ndash Q1) ndash 3c c Q1 c (Q3 ndash Q2) (Q1 ndash Q2) 2 The Second Degree Approximation method calculates a, b, and c as follows: a Q3 ndash 3(Q2 ndash Q1) 370 ndash 3(400 ndash 384) 370 ndash 3(16) 322 b (Q2 ndash Q1) ndash3c (400 ndash 384) ndash (3 times ndash23) 16 69 85 c (Q3 ndash Q2) (Q1 ndash Q2) 2 (370 ndash 400) (384 ndash 400) 2 ndash23 This is a calculation of second degree approximation forecast: Y a bX cX 2 322 85X (ndash23) (X 2 ) When X 4, Q4 322 340 ndash 368 294. The forecast equals 294 3 98 per period. When X 5, Q5 322 425 ndash 575 172. The forecast equals 172 3 58.33 rounded to 57 per period. When X 6, Q6 322 510 ndash 828 4. The forecast equals 4 3 1.33 rounded to 1 per period. This is the forecast for next year, Last Year to This Year: 3.2.8 Method 8: Flexible Method This method enables you to select the best fit number of periods of sales order history that starts n months before the forecast start date, and to apply a percentage increase or decrease multiplication factor with which to modify the forecast. This method is similar to Method 1, Percent Over Last Year, except that you can specify the number of periods that you use as the base. Depending on what you select as n, this method requires periods best fit plus the number of periods of sales data that is indicated. This method is useful to forecast demand for a planned trend. 3.2.8.1 Example: Method 8: Flexible Method The Flexible Method (Percent Over n Months Prior) is similar to Method 1, Percent Over Last Year. Both methods multiply sales data from a previous time period by a factor specified by you, and then project that result into the future. In the Percent Over Last Year method, the projection is based on data from the same time period in the previous year. You can also use the Flexible Method to specify a time period, other than the same period in the last year, to use as the basis for the calculations. Multiplication factor. For example, specify 110 in the processing option to increase previous sales history data by 10 percent. Base period. For example, n 4 causes the first forecast to be based on sales data in September of last year. Minimum required sales history: the number of periods back to the base period plus the number of time periods that is required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.9 Method 9: Weighted Moving Average The Weighted Moving Average formula is similar to Method 4, Moving Average formula, because it averages the previous months sales history to project the next months sales history. However, with this formula you can assign weights for each of the prior periods. This method requires the number of weighted periods selected plus the number of periods best fit data. Similar to Moving Average, this method lags behind demand trends, so this method is not recommended for products with strong trends or seasonality. This method is useful to forecast demand for mature products with demand that is relatively level. 3.2.9.1 Example: Method 9: Weighted Moving Average The Weighted Moving Average (WMA) method is similar to Method 4, Moving Average (MA). However, you can assign unequal weights to the historical data when using WMA. The method calculates a weighted average of recent sales history to arrive at a projection for the short term. More recent data is usually assigned a greater weight than older data, so WMA is more responsive to shifts in the level of sales. However, forecast bias and systematic errors occur when the product sales history exhibits strong trends or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. The number of periods of sales history (n) to use in the forecast calculation. For example, specify n 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. A large value for n (such as 12) requires more sales history. Such a value results in a stable forecast, but it is slow to recognize shifts in the level of sales. Conversely, a small value for n (such as 3) responds more quickly to shifts in the level of sales, but the forecast might fluctuate so widely that production cannot respond to the variations. The total number of periods for the processing option rdquo14 - periods to includerdquo should not exceed 12 months. The weight that is assigned to each of the historical data periods. The assigned weights must total 1.00. For example, when n 4, assign weights of 0.50, 0.25, 0.15, and 0.10 with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: January forecast equals (131 times 0.10) (114 times 0.15) (119 times 0.25) (137 times 0.50) (0.10 0.15 0.25 0.50) 128.45 rounded to 128. February forecast equals (114 times 0.10) (119 times 0.15) (137 times 0.25) (128 times 0.50) 1 127.5 rounded to 128. March forecast equals (119 times 0.10) (137 times 0.15) (128 times 0.25) (128 times 0.50) 1 128.45 rounded to 128. 3.2.10 Method 10: Linear Smoothing This method calculates a weighted average of past sales data. In the calculation, this method uses the number of periods of sales order history (from 1 to 12) that is indicated in the processing option. The system uses a mathematical progression to weigh data in the range from the first (least weight) to the final (most weight). Then the system projects this information to each period in the forecast. This method requires the months best fit plus the sales order history for the number of periods that are specified in the processing option. 3.2.10.1 Example: Method 10: Linear Smoothing This method is similar to Method 9, WMA. However, instead of arbitrarily assigning weights to the historical data, a formula is used to assign weights that decline linearly and sum to 1.00. The method then calculates a weighted average of recent sales history to arrive at a projection for the short term. Like all linear moving average forecasting techniques, forecast bias and systematic errors occur when the product sales history exhibits strong trend or seasonal patterns. This method works better for short range forecasts of mature products than for products in the growth or obsolescence stages of the life cycle. n equals the number of periods of sales history to use in the forecast calculation. For example, specify n equals 4 in the processing option to use the most recent four periods as the basis for the projection into the next time period. The system automatically assigns the weights to the historical data that decline linearly and sum to 1.00. For example, when n equals 4, the system assigns weights of 0.4, 0.3, 0.2, and 0.1, with the most recent data receiving the greatest weight. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.11 Method 11: Exponential Smoothing This method calculates a smoothed average, which becomes an estimate representing the general level of sales over the selected historical data periods. This method requires sales data history for the time period that is represented by the number of periods best fit plus the number of historical data periods that are specified. The minimum requirement is two historical data periods. This method is useful to forecast demand when no linear trend is in the data. 3.2.11.1 Example: Method 11: Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing, the system assigns weights that decline linearly to the historical data. In Exponential Smoothing, the system assigns weights that exponentially decay. The equation for Exponential Smoothing forecasting is: Forecast alpha (Previous Actual Sales) (1 ndashalpha) (Previous Forecast) The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. However, Method 12 also includes a term in the forecasting equation to calculate a smoothed trend. The forecast is composed of a smoothed average that is adjusted for a linear trend. When specified in the processing option, the forecast is also adjusted for seasonality. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD is a measure of forecast error. POA is a measure of forecast bias. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD is a measure of the average magnitude of errors to expect, given a forecasting method and data history. Because absolute values are used in the calculation, positive errors do not cancel out negative errors. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. When forecasts are consistently too high, inventories accumulate and inventory costs rise. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In services, the magnitude of forecast errors is usually more important than is forecast bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Weighted Moving Average Forecast and MAD in EXCEL The problem states that the manager of the Carpet City outlet needs to make an accurate forecast of the demand for Soft Shag carpet (it biggest seller). If the manager does not order enough carpet from the carpet mill, customers will buy their carpet from one of Carpet City many competitors. The manager has collected the following demand data for the past eight month Month Demand for Soft Shag Carpet 1,000 yd 1 8 2 12 3 7 4 9 5 15 6 11 7 10 8 12 Compute a 3 month moving average forecast for month 4 through 9 Compute a weighed 3 month moving average forecast for months 4 through 9. Assign weights of .53. 33,and .12 to the month in sequence, starting with the most recent month. Compare the two forecast by using MAD, which forecast appears to be more accurate. Solution Preview Please refer to the attachment Solution. xlsx for the working and. Solution Summary A 3 Month Moving Average Forecast and another 3 Month Weighted Moving Average Forecast, using different smoothingweighing factors, has been performed in Excel. Forecast Error (MAD) has been calculated and the two forecasts has been compared using these MAD values. Add Solution to Cart Remove from Cart

No comments:

Post a Comment